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The statistical model proposed in an accompanying paper is generalized to treat
multiport scattering problems. Attention is first focused on two-port lossless systems
and the model is shown to be consistent with Random Matrix Theory. The predictions
are then tested by direct numerical simulation for a specific two-port cavity. Formulae
are derived for the average transmission and reflection coefficients in terms of the
port radiation impedance. The cases of cavities with multiple ports, and with a single
port and distributed losses are compared.
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Introduction

In an accompanying paper (Zheng, Antonsen, & Ott, 2004), a general statistical model is
proposed to describe scattering of high-frequency electromagnetic waves from irregular
cavities. (Here, by “high frequency” we mean that the wavelength is substantially less
than an appropriate characteristic length of the cavity.) This problem arises when one
considers the coupling of electromagnetic energy into and out of complicated enclosures.
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38 X. Zheng et al.

The statistical approach is warranted when the exact details of the configuration are
unknown or are too complicated to simulate accurately. The model proposed in Zheng,
Antonsen, and Ott (2004) gives a method for calculating the statistical distributions of
important quantities that depend only on a small number of system-specific parameters.
These system-specific parameters are the average spacing between resonant frequencies
of the enclosure, the average quality factor, and the properties of the coupling ports. It was
shown (Zheng, Antonsen, & Ott, 2004) that the key property needed to characterize the
coupling port is its radiation impedance, that is, the impedance that would be seen at the
port if the other boundaries of the enclosure were perfectly absorbing or were removed
to infinity. This impedance can be used to “normalize” the fluctuating impedance at the
port of the actual enclosure. With this normalization the fluctuating impedance has a
universal (i.e., system-specific independent) distribution.

The treatment in Zheng, Antonsen, and Ott (2004) focused on the case of a single
port. The purpose of the present paper is to generalize these results to the case of multiple
ports. A multiple port description is necessary if one is to describe the transmission of
energy entering the enclosure to some other point in the enclosure. We will show that
the multiple port case can be treated using the same approach as the single port case,
the main difference being that the multiple port description involves the introduction of
matrices describing the coupling to the system.

Scattering can be described by either the impedance matrix, which relates voltages
and currents at the ports, or by the scattering matrix, which relates the amplitudes of
incoming and outgoing waves. In our model we focus initially on the impedance ma-
trix because its properties can be related directly to the radiation impedances of the
ports. Then, based on our understanding of the impedance matrix, conclusions about the
scattering matrix are drawn.

The statistical treatment of wave scattering in complicated systems has been de-
veloped extensively in the physics community in connection with nuclear scattering
(Krieger, 1967) and scattering in mesoscopic systems such as quantum dots (Alhassid,
2000; Beenakker, 1997) and disordered conductors (Mello, 1990). Many of the concepts
developed in consideration of these problems have also been applied to electromagnetic
scattering in microwave cavities (Doron, Smilansky, & Frenkel, 1990; Chung et al., 2000;
Méndez-Sánchez et al., 2003; Hemmady et al., 2004; Barthélemy, Legrand, & Mortes-
sagne, 2004a, 2004b). The underlying approach is a description of the system based
on random matrix theory (RMT) (Seba, Zyczkowski, & Zakrewski, 1996; Fyodorov &
Sommers, 1997; Mehta, 1991; Efetov, 1983). Here, the specific systems under consider-
ation are replaced or modelled by random matrices. These are matrices whose elements
are independent Gaussian random numbers drawn from specific ensemble distributions.
Two different ensembles that are considered are relevant to our problem. The Gaussian
orthogonal ensemble (GOE) gives rise to a real symmetric matrix, where the variance of
the diagonal elements is twice that of the off-diagonal elements. This applies to wave
systems with time reversal symmetry (TRS), as would apply in media with real symmet-
ric permittivity and permeability tensors. The Gaussian unitary ensemble (GUE) gives
rise to complex, self-adjoint matrices, where the off-diagonal elements have independent
real and imaginary parts. This applies to wave systems that have time reversal symmetry
broken (TRSB). For electromagnetic wave systems, this case is realized when a nonre-
ciprocal medium such as magnetized ferrite or a magnetized cold plasma is present in
the system.

Random matrix theory, in spite of its high level of abstraction, has been remarkably
successful in predicting the universal statistical properties of wave systems. This includes
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Chaotic Impedance/Scattering 39

the description of the distribution of resonances in closed systems as well as the properties
of scattering from open systems. One issue that we address here is how to simultaneously
account for the universal properties as predicted by RMT and the system-specific prop-
erties that depend on details of the coupling. In our approach this connection is made
through the radiation impedance of the ports (Hemmady et al., 2004). (This connection
has also been made by Warne et al. [2003].) An alternative approach (Mello, Peveyra,
& Seligman, 1985) in the physics community, known as “the Poisson Kernel,” is based
directly on the scattering matrix. This approach describes the distribution of fluctuations
in the scattering matrix elements in terms of their average values. Recently, Kuhl et al.
(2004) applied the Poisson kernel approach to analyze the statistics of measured values
of the reflection coefficient for a microwave cavity. The measured results were found to
be in agreement with predictions based on the Poisson kernel.

The organization of this paper is as follows. The next section generalizes the descrip-
tion of the quasi-two-dimensional cavity introduced in Zheng, Antonsen, and Ott (2004)
to describe the presence of multiple ports. Our treatment will be sufficiently general so
as to treat the case of both isolated ports and nonisolated ports. We then discuss the
changes that must be made when nonreciprocal elements such as a magnetized ferrite
are present. In the following section we examine the statistical properties of the proposed
impedance matrix, focusing on the two-port case. We also compare the model predictions
with the results of computational electromagnetic calculations using HFSS. In the subse-
quent section we consider properties of the scattering matrix when the port coupling is
imperfect. We find that the average value of the reflection coefficient is a function of the
radiation reflection coefficient. Also, we consider the case of multiple ports and verify
the equivalence of distributed and diffractive losses in the case of large numbers of ports.
We then summarize our results. Except for the subsection on the M-Port Case, M>2, all
our considerations will be in the context of lossless cavities. To our knowledge, our work
here and in our accompanying paper, Zheng, Antonsen, and Ott (2004), constitute the
first computational tests of theoretically predicted universal scattering matrix statistics
via numerical solutions of the wave equation.

Generalization of the Model

Impedance in the TRS Case

Following Zheng, Antonsen, and Ott (2004), we consider a quasi-two-dimensional cavity
in which only the lowest order transverse magnetic modes are excited. The fields in
the cavity are determined by the spatially dependent phasor amplitude of the voltage
V̂T (x, y). The voltage is excited by currents Îi drives at the various coupling ports,

(∇2⊥ + k2)V̂T = −jkhη0

M∑
i=1

ui Îi . (1)

Here k = ω/c, η0 = √
µ0/ε0, h is the height of the cavity, and an exponential time

dependence exp(jωt) has been assumed for all time dependent quantities. Each of the
M ports is characterized by a profile function µi centered at different locations and∫

dxdyui = 1. The phasor voltage at each port can be calculated as before, V̂i =∫
dxdyuiV̂T ≡ 〈uiV̂T 〉 and is linearly related to the phasor currents Îj through the

impedance matrix, V̂i = ∑
j Zij Îj .

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 O

f 
M

ar
yl

an
d]

 a
t 1

2:
19

 0
8 

M
ay

 2
01

3 



40 X. Zheng et al.

To obtain an expression for the matrix Z, we expand V̂T as before (Zheng, Antonsen,
& Ott, 2004) in the basis φn, the eigenfunctions of the closed cavity. The result is

Z = −jkhη0

∑
n

�n�
T
n

k2 − k2
n

, (2)

where the vector �n is [〈u1φn〉, 〈u2φn〉, . . . , 〈uMφn〉]T . Using the random eigenfunction
hypothesis, we write φn as a superposition of random plane waves. Thus the elements
of the M-dimensional vector �n will be Gaussian random variables with zero mean.
Elements of �n with different values of n corresponding to different eigenfunctions
will be independent. However, for a given eigenfunction the elements of �n may be
correlated. This will be true, particularly if two ports are close together, because the
random superposition of plane waves leads to an autocorrelation function J0(kδr) at
two positions separated by δr (Berry, 1977; Alhassid & Lewenkopf, 1995). To treat
correlations we write

�n = L(kn)wn, (3)

where L is a nonrandom, as yet unspecified, M × M matrix that depends on the specific
coupling geometry at the ports and may depend smoothly on kn, and wn is an M-
dimensional Gaussian random vector with zero mean and covariance matrix equal to the
M ×M identity matrix. That is, we require that the components of the random vector wn

are statistically independent of each other, each with unit variance. Correlations between
ports are described by the off-diagonal components of L. The idea behind (3) is that the
excitation of the ports by an eigenmode will depend on the port geometry and on the
structure of the eigenmode in the vicinity of the ports. The dependence on the specific
port geometry is not sensitive to small changes in the frequency or cavity configuration
and is embodied in the matrix quantity L(k). The structure of the eigenmode in the
vicinity of the ports, however, is very sensitive to the frequency and cavity configuration,
and this motivates the statistical treatment via the random plane wave hypothesis. From
the random plane wave hypothesis, the excitation of the port from a given plane wave
component is random, and since many such waves are superposed, by the central limit
theorem, the port excitation is a Gaussian random variable, as reflected by the vector wn.
In Zheng, Antonsen, and Ott (2004), we have derived a result equivalent to (3) for the
case of a one-port with a specific model of the excitation at the port (namely, a vertical
source current density Iu(x, y)ẑ between the plates). Our derivation here will be more
general in that it does not depend on a specific excitation or on the two-dimensional cavity
configuration used in Zheng, Antonsen, and Ott (2004). Thus this derivation applies, for
example, to three-dimensional cavities and arbitrary port geometries. From (2) and (3)
we have for the Z matrix

Z = −jkhη0

∑
n

L(kn)wnw
T
n LT (kn)

k2 − k2
n

. (4)

We now take the continuum limit of (4) and average over wn,

〈Z〉 = −j

∫ ∞

0
khη0L(k′) 〈wnw

T
n 〉

k2 − (k′)2
LT (k′)dk′2

�
, (5)
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Chaotic Impedance/Scattering 41

where � is the averaged spacing in k2
n values. We note that the continuum limit is

approached as the size of the cavity is made larger and larger, thus making the resonance
spacing (k2

n+1 − k2
n) approach zero. Thus, the continuum limit corresponds to moving

the lateral walls of the cavity to infinity. Using our previous one-port argument as a
guide, we anticipate that, if the pole in (5) at k′2 = k2 is interpreted in the causal sense
(corresponding to outgoing waves in the case with the walls removed to infinity), then
〈Z〉 in (5) is the radiation impedance matrix,

〈Z〉 = ZR(k) = R̂R(k) + jX̂R(k), (6)

where V̂ = ZR(k)Î with V̂ the M-dimensional vector of port voltages corresponding
to the M-dimensional vector of port currents Î , in the case where the lateral walls have
been removed to infinity. With the above interpretation of the pole, the real part of (5)
yields

R̂R(k) = πkhη0L(k)LT (k)/�. (7)

Thus, (2) becomes

Z = − j

π

∑
n

�
R̂

1/2
R (kn)wnw

T
n R̂

1/2
R (kn)

k2 − k2
n

, (8)

where 〈wnw
T
n 〉 = 1M . (Note that the formula for � is different in two and three dimen-

sions.) In the case of transmission line inputs that are far apart, e.g., of the order of the
cavity size, then the off-diagonal elements of ZR are small and can be neglected. On the
other hand, this will not be the case if some of the transmission line inputs are separated
from each other by a short distance of the order of a wavelength. Similarly, if there is a
waveguide input to the cavity where the waveguide has multiple propagating modes, then
there will be components of V̂ and Î for each of these modes, and the corresponding
off-diagonal elements of ZR for coupling between these modes will not be small.

For the remainder of the paper, we will assume identical transmission line inputs
that are far enough apart that we may neglect the off-diagonal elements of ZR . As
before, we will take the eigenvalues k2

n to have a distribution generated by RMT. Because
the elements of Z depend on the eigenvalues k2

n, there will be correlations among the
elements. In the lossless case the elements of the Z matrix are imaginary, Z = jX, where
X is a real symmetric matrix. Consequently X has real eigenvalues. We will show in the
next section that the distribution for individual eigenvalues of X is Lorentzian with mean
and width determined by the corresponding radiation impedance.

Effects of TRSB

In the time reversal symmetric system, the eigenfunctions of the cavity are real and
correspond to superpositions of plane waves with equal amplitude waves propagating in
opposite directions as in (13) of Zheng, Antonsen, and Ott (2004), which is recalled as
follows:

φn = lim
N→∞

√
2

AN
Re

{
N∑

i=1

αi exp(jkn
ei · 
x + jθi)

}
, (9)
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42 X. Zheng et al.

where αi , θi , and 
ei are random variables. If a nonreciprocal element (such as a mag-
netized ferrite) is added to the cavity, then time reversal symmetry is broken. As a
consequence, the eigenfunctions become complex. Equation (9) is modified by removal
of the operation of taking the real part, and the 〈uφn〉 in (12) of Zheng, Antonsen, and
Ott (2004) also become complex. In practice, there exists a crossover regime for the
transition from situations where TRS applies to those it is fully broken. An interested
reader might refer to situations where discussion in Chung et al. (2000) and the refer-
ences therein. However, in this paper, we will discuss only the case when TRS is fully
broken. In this case we find

〈u�φn〉 = [�R̂R(kn)]1/2w�n, (10)

where w�n = (w
(r)
�n + jw

(i)
�n )/

√
2 and w

(r)
�n and w

(i)
�n are real, independent Gaussian

random variables with zero mean and unit variance. The extra factor of
√

2 accounts for
the change in the normalization factor in (9), required when the eigenfunctions become
complex. Further, transpose wT

n , in (8), is now replaced by the conjugate transpose w
†
n.

A further consequence of TRSB is that the distribution of eigenvalues is changed.
The main difference is the behavior of P(s) for small s. In particular, the probability
of small spacings in a TRSB system (P(s) ∼ s2) is less than than of a TRS system
(P(s) ∼ s).

For the sake of simplicity, we will assume that all the transmission lines feeding the
cavity ports are identical and have the same radiation impedance, ZR = R̂R + jX̂R =
(RR + jXR)1M , where RR and XR are real scalars. Analogous to the one-port case,
we can define a model normalized reactance matrix ξij = Xij /RR for the case RR(kn)

constant for n ≤ N and RR(kn) = 0 for n > N ,

ξij = − 1

π

N∑
n=1

winw
∗
jn

k̃2 − k̃2
n

, (11)

where k̃2 = k2/�, w�n = (w
(r)
�n + jw

(i)
�n )/

√
2, w

(r)
�n and w

(i)
�n are real, independent

Gaussian random variables with zero mean and unit variance, E(w∗
inwjn) = δij . Note

that a unitary transformation, ξ ′ = UξU†, returns (11) with win and wjn replaced by
w′

in and w′
jn where w′

n = Uwn. Since a unitary transformation does not change the
covariance matrix, E(winw

∗
jn) = E(w′

inw
′∗
jn) = δij , the statistics of ξ and of ξ ′ are the

same; i.e., their statistical properties are invariant to unitary transformations.

Properties of the Impedance Matrix and Eigenvalue Correlations for
Lossless Cavities

The universal fluctuation properties of the Z matrix can be described by the model matrix
ξij specified in (11). In the TRS case the wjn are real Gaussian random variables with
zero mean and unit width and the spacings satisfy (16) in Zheng, Antonsen, and Ott
(2004). In the TRSB case the wjn are complex and the spacings between adjacent k2

n

satisfy (17) in Zheng, Antonsen, and Ott (2004).
In the case under consideration of multiple identical ports, ξij will have a diagonal

mean part ξ̄ δij for which all the diagonal values are equal. The eigenfunctions of ξij =
ξ̃ δij + ξ̃ij and of its fluctuating part ξ̄ij will thus be the same. Consequently, we focus
on the eigenvalues of the fluctuating part.
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Chaotic Impedance/Scattering 43

We initially restrict our considerations to the two-port case. We recall that for the
lossless one-port case there is no difference in the statistics of the normalized impedance
ξ for the TRS and TRSB cases. In both cases, it is Lorentzian with unit width. In the
lossless two-port case, however, essential differences are observed when time reversal is
broken. Using (11), we generate 106 realizations of the 2 by 2 matrix ξ in both the TRS
and TRSB cases, again for N = 2000 and k2 = 1000. In this test we generated spectra
based on independent spacings (Zheng, Antonsen, & Ott, 2004). For each realization
we compute the eigenvalues of the ξ matrix. We find that in both the TRS and TRSB
cases the eigenvalues of the ξ -matrix are Lorentzian distributed with unit width. That is,
histograms of the eigenvalues generated according to the TRS and TRSB prescriptions
are identical. However, if we consider the joint probability density function (PDF) of
the two eigenvalues for each realization, then differences between the TRS and TRSB
cases emerge. We map the two eigenvalues ξi , i = 1 or 2, into the range [π/2, π/2] via
the transformation θi = arctan(ξi). Scatter plots of θ2 and θ1 for 106 random numerical
realizations of the ξ matrix are shown in Figure 1a for the TRS case and in Figure 1b for
the TRSB case. The white diagonal band in both cases shows that the eigenvalues avoid
each other (i.e., they are anticorrelated). This avoidance is greater in the TRSB case than
in the TRS case. The correlation,

corr(θ1, θ2) ≡ 〈θ1θ2〉 − 〈θ1〉〈θ2〉√
〈θ2

1 〉〈θ2
2 〉

, (12)

is numerically determined to be −0.216 for the TRS case and −0.304 for the TRSB case.
From the construction of the ξ matrices for the TRS and TRSB cases their statistical

properties are invariant under orthogonal and unitary transformations, respectively. Ran-
dom matrix theory has been used to study these rotation-invariant ensembles and predicts
the joint density function of θ1 and θ2 (Fyodorov & Sommers, 1997) to be

Pβ(θ1, θ2) ∝ |ej2θ1 − ej2θ2 |β, (13)

where β = 1 for the TRS case and β = 2 for the TRSB case. Note that based on (13),
the probability density function for one of the angles P(θ1) = ∫

dθ2P(θ1, θ2) is uniform.
From the definition θ = arctan ξ , this is equivalent to the eigenvalues of the ξ matrix
having Lorentzian distributions (Pξ (ξi) = Pθ(θi)|dθi/dξi | = |dθi/dξi |/2π).

The correlation coefficients calculated from the numerical results in Figures 1a and 1b
are consistent with the predictions of the random matrix theory from (13), that is, −0.216
for the TRS case and −0.304 for the TRSB case. This implies that the distribution of
spacings and the long-range correlations in the eigenvalues of the random matrix, which
are ignored in the construction of the k2

n in the above computation, are not important in
describing the statistics of lossless impedance matrices. As we have discussed in Zheng,
Antonsen, and Ott (2004), these correlations could be included using a sequence of k2

n

generated by the eigenvalues of a random matrix. (We note that by Zheng, Antonsen, and
Ott (2004), lossy cavities yield statistics that are different in the TRS and TRSB cases.)

Now we test these predictions for numerical simulations of the chaotic cavity con-
sidered in Zheng, Antonsen, and Ott (2004). We use the HFSS software to calculate the
cavity impedance matrix and radiation impedance matrix for a two-port case. We locate
the two ports, at the positions (x, y) = (14 cm, 7 cm) and (x, y) = (27 cm, 13.5 cm). As
in Zheng, Antonsen, and Ott (2004), we also include the 0.6 cm cylindrical perturbation,
which is located alternately at 100 random points in the cavity, and we numerically cal-
culate the impedance matrix for 4000 frequencies in the range 6.75 GHz to 8.75 GHz.
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44 X. Zheng et al.

Figure 1. (a) Scatter plot of θ1 vs. θ2 in the TRS case. (b) Scatter plot of θ1 vs. θ2 in the TRSB
case. (c) Scatter plot of θ1 vs. θ2 from the HFSS simulation, with 100 realizations and sweeping
frequency from 6.75 GHz to 8.75 GHz.
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Chaotic Impedance/Scattering 45

We obtain a normalized Z matrix, which is analogous to the ξ matrix defined in (11),
according to

ξhf ss = R−1
R (Im[Zcav] − 12XR), (14)

where 12 is the 2 by 2 identity matrix, Zcav is the 2 by 2 impedance matrix calculated by
HFSS, and XR and RR are the radiation reactance and resistance for a single port. For
each realization of ξhf ss we calculate its eigenvalues ξi = tan θi , i = 1, 2, and plot the
values on the θ1 vs. θ2 plane, as shown in Figure 1c. The anticorrelation of the angles is
seen in the figure, and corr(θ1, θ2) from (12) is −0.205, which is comparable with what
we expect for the TRS case, −0.216.

So far we have focused on the eigenvalues of the impedance matrix. The eigen-
vectors of Z are best described in terms of the orthogonal matrix whose columns are
the orthonormal eigenfunctions of Z. In particular, in the TRS case, since ξ is real and
symmetric,

ξ = O

(
tan θ1 0

0 tan θ2

)
OT , (15)

where OT is the transpose of O, and O is an orthogonal matrix, which we express in
the form

O =
(

cos η sin η

− sin η cos η

)
. (16)

A scatter plot representing the joint PDF of the angle η and one of the eigenvalue angles
θ1 is shown in Figure 2, part (a1). In analogy to how we obtain the realizations used in
Figure 2 in Zheng, Antonsen, and Ott (2004), this plot is obtained by inserting random
choices for the k2

n and win in (11). Notice that we have restricted η in Figure 2, part
(a1) to the range 0 ≤ η ≤ π/2. This can be justified as follows. The columns of the
matrix O in (16) are the eigenvectors of ξ . We can always define an eigenvector such
that the diagonal components of O are real and positive. Further, since the eigenvectors
are orthogonal, one of them will have a negative ratio for its two components. We pick
this one to be the first column and hence this defines which of the two eigenvalues is
θ1. The scatter plots in Figure 1 show that the restriction on η maintains the symmetry
of θ1 and θ2, vis. Pβ(θ1, θ2) = Pβ(θ2, θ1). Also, in part (a2) of Figure 2 (and part (a3)),
we plot the conditional distribution of θ (and η) for different values of η (and θ). As
can be seen, these plots are consistent with η and θ being independent. This is also a
feature of the random matrix model (Mehta, 1991; Efetov, 1983). This independence will
be exploited later when the S matrix is considered.

For TRSB systems, the ξ matrix is Hermitian, ξT = ξ∗. A unitary matrix of eigen-
vectors that diagonalizes it can be parameterized as

U =
(

cos η sin ηeiζ

− sin ηe−iζ cos η

)
. (17)

Thus, there is an extra parameter ζ characterizing the complex eigenvectors of the ξ

matrix. According to random matrix theory, the eigenfunctions and eigenvalues are in-
dependently distributed; i.e., η in the U matrix should be independent of θ1, θ2. This
expectation is confirmed in Figure 2b, where a scatter plot of θ1 vs. η and conditional
distributions of θ and of η are shown.
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46 X. Zheng et al.

Figure 2. Scatter plot of η vs. θ for (a1) the model impedance in the TRS case, (b1) the model
impedance in the TRSB case, and (c1) from the HFSS simulation. Plots (a2) and (a3) [(b2) and
(b3), (c2) and (c3)] show conditional probability for θ and for η for the model TRS case [model
TRSB case, the HFSS simulation].

Again, we test the independence of θ and η with HFSS calculations. Using the ξhf ss

matrix obtained from (14), the angles θ and η can be recovered from the eigenvalues and
the eigenvectors of the ξhf ss . With the ensemble generated by sweeping the frequency
from 6.75–8.75 GHz and considering 100 different locations of our cylindrical perturber,
we obtain the joint distribution of θ and η in Figure 2, part (c1) as well as their individual
distributions in Figure 2, parts (c2) and (c3). Here we see that the distributions are
qualitatively similar to those of the model impedance matrix in the TRS case. However,
there are significant departures which need to be investigated. It is likely that these are
the result of the same strong multipath interference which gave rise to the reactance
variations in the one-port case shown in Zheng, Antonsen, and Ott (2004).

Averaged Reflection Coefficient in Multiport Case

In this section, we use our knowledge of the statistical properties of the Z matrix to
deduce properties of the S matrix, particularly for the ensemble average of the reflection
coefficient 〈|S11|2〉. For a system with two ports, in the lossless case considered here we
note that 〈|S12|2〉 = 1 − 〈|S11|2〉.
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Chaotic Impedance/Scattering 47

According to the previous section, for the case of nonperfect coupling, a model of
the cavity impedance matrix can be expressed as Z = R̂

1/2
R ξR̂

1/2
R + jX̂R , where ZR is

the 2 × 2 radiation impedance and ξ is a 2 × 2 random matrix generated according to
(11). If the incoming frequency is restricted in a narrow range, the radiation impedance
ZR is essentially constant. In this paper we assume that identical ports are connected to
identical transmission lines, i.e., ZR and the transmission line characteristic impedance
Z0 are diagonal matrices with equal diagonal elements. Thus, we obtain the expression
for the S matrix, S = (Z + Z0)

−1(Z − Z0),

S = [(γRξ + jγX12) + 12]−1[(γRξ + jγX12) − 12], (18)

where γR = RR/Z0, γX = XR/Z0 are scalars, and 12 is the 2 × 2 identity matrix. These
two parameters, as we show later, fully specify the coupling effects on the wave transport
process. The special case of perfect coupling corresponds to γR = 1 and γX = 0.

Lossless Two-Port Case

We recall that for TRS systems the reactance matrix X is real and symmetric and can be
diagonalized by an orthogonal matrix O, (16). If identical ports are connected to identical
transmission lines of characteristic impedance Z0, then the scattering matrix S is also
diagonalized by O, and we can write

S = O

(
ejφ1 0

0 ejφ2

)
OT . (19)

The scattering phases φ1 and φ2 are then related to the eigenvalue angles θi by formulas
analogous to the one-port case, tan(π/2 − φi/2) = γR tan θi + γX.

Substituting (16) for O in (19) and multiplying the matrices, we obtain

|S11|2 = cos4 η + sin4 η + 2 cos2 η sin2 η cos(φ1 − φ2). (20)

We can now compute the expected value of the square of |S11| by assuming that η is
independent of the angles φ1 and φ2 and is uniformly distributed, which yields 〈cos4 η+
sin4 η〉 = 3/4, 2〈cos2 η sin2 η〉 = 1/4, and

〈|S11|2〉 = 3

4
+ 1

4
〈cos(φ1 − φ2)〉. (21)

Assuming the angles θ1 and θ2 are distributed according to (13) and using the relation
between φ1,2 and θ1,2, evaluation of 〈cos(φ1 − φ2)〉 is carried out in the appendix. The
result is

〈|S11|2〉 = 1 − 1 − |ρR|4
8|ρR|2 − (1 − |ρR|2)3

16|ρR|3 ln
1 − |ρR|
1 + |ρR| , (22)

where “the free space reflection coefficient” ρR is defined as the same way in Zheng,
Antonsen, and Ott (2004),

ρR = |ρR|ejφR = γR + jγX − 1

γR + jγX + 1
. (23)
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48 X. Zheng et al.

We first check the asymptotic behavior for the power transmission coefficient T =
1 − |S11|2 implied by the formula (22). In the noncoupled case, |ρR| = 1, i.e., all the
incoming power is reflected, and we obtain from (22) 〈T 〉 = 0. On the other hand, in the
perfect coupling case, |ρR| = 0, ln[(1 + |ρR|)/(1 − |ρR|)] in the (22) can be expanded
as 2(|ρR| − |ρR|3/3). Therefore, 〈T 〉 = 1/3. This is consistent with the result in Kogan,
Mello, and Liqun (2000), 〈R〉 = 2〈T 〉. That is, in the perfect coupling case the average
of the reflected power is twice that of the transmitted.

Equation (22) shows that the averaged power reflection and transmission coefficients
only depend on the magnitude of ρR and not its phase. A plot of 〈|S11|2〉 versus |ρR| is
shown in Figure 3a. Also shown are data points obtained by taking 106 realizations of
the impedance matrix (11) with eigenvalue statistics generated from TRS spectrum and
computing the average of |S11|2 for different combinations of γR and γX characterizing
the radiation impedance. The data confirm that the average of |S11|2 depends only on the
magnitude of the free space reflection coefficient and not its phase.

In the TRSB case, the eigenvalues of the X matrix are still real, but the eigenvectors
are complex. In this case, (19) is replaced by

S = U

(
ejφ1 0

0 ejφ2

)
U†, (24)

where the unitary matrix U is given by (17). Multiplying the matrices in (24), we find
the same expression for |S11|2, (20), as in the TRS case. The average of |S11|2 will be
different in the TRSB case because of the different statistics for η, θ1, and θ2, which
characterize the eigenfunctions and eigenvalues of the impedance matrix. In particular, η

has a distribution, arising from the SU(2) group (Cornwell, 1997),

Pη(η) = |sin(2η)|, (25)

which yields 〈cos4 η + sin4 η〉 = 2/3, 2〈cos2 η sin2 η〉 = 1/3, and thus,

〈|S11|2〉 = 2

3
+ 1

3
〈cos(φ1 − φ2)〉. (26)

Recalling that θ1 and θ2 are distributed according to (13) with β = 2, this results in a
different set of integrals (see the appendix). The result is

〈|S11|2〉 = 1 − (|ρR|2 − 1)(|ρR|2 − 3)

6
, (27)

which depends only on the magnitude of the free space reflection coefficient. A plot
of 〈|S11|2〉 from (27) versus |ρR| is also shown in Figure 3a, along with data points
obtained by taking 106 realizations of the TRSB impedance matrix (11) generating from
random numbers and computing the average of |S11|2 for different combinations of γR

and γX characterizing the free space impedance. Once again, the data collapse to the
curve predicted in (27).

We now test the relation between 〈|S11|2〉 and |ρR| with the impedance matrices
we obtained from the HFSS two-port calculations. We can vary the transmission line
impedance Z0 and generate 〈|S11|2〉 and |ρR|. However, the range of |ρR| values ac-
cessible doing this is limited because of the large inductive radiation reactance asso-
ciated with the coupling port. To extend the range of |ρR| we add a shunt susceptance
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Chaotic Impedance/Scattering 49

Figure 3. (a) Numerical simulation for the average reflection coefficient 〈|S11|2〉 vs. magnitude of
ρR defined in (23) for the TRS and the TRSB system, taking 106 realizations of the impedance
matrix, 30 uniformly spaced values of γR from 0.1 to 3, and 31 equally spaced values of γX from
0 to 3. (b) Average reflection coefficient 〈|S11|2〉 vs. |ρR | using the cavity impedance and radiation
impedance from HFSS calculation and varying the values of Z0 and the capacitive reactance Y .

Y = (jωC) in parallel with each port. This results in a modified cavity impedance matrix
Z′

cav = (Z−1
cav + jωC12)

−1. We then form the scattering matrix

S = (Z′
cav + Z0)

−1(Z′
cav − Z0). (28)

The corresponding free space reflection coefficient is generated by Z′
R = (Z−1

R +jωC)−1

and |ρR| = |Z′
R + Z0|−1|Z′

R − Z0|. By choosing appropriate combinations of ωC and
Z0, we can achieve a range of |ρR| values between 0 and 1. For each |ρR| value,
we average |S11|2 over frequencies and realizations and plot the points on Figure 3b.
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50 X. Zheng et al.

These compare favorably with the theoretical result (solid curve) based on the random
matrix theory results.

M-Port Case, M > 2

Using the random coupling model (11) and assuming perfect coupling γR = 1, γX = 0
(i.e., |ρR| = 0), we have simulated the S matrix for cases of two to seven, 13 and 57
ports. The results for the average reflection and transmission coefficients were found to
satisfy

TRS: 〈|Sij |2〉 =




2

M + 1
, i = j,

1

M + 1
, i �= j,

(29)

and

TRSB: 〈|Sij |2〉 =




1

M
, i = j,

1

M
, i �= j,

(30)

where M is the number of ports connecting the cavity to transmission lines. It seems
that, in the TRS case, the input waves “remember” their entry port and have a preference
for reflection through it (this is related to the concept of “weak localization” reviewed
in Lee and Ramakrishnan [1984] and Bergmann [1984]). In contrast, for the TRSB case,
the waves behave as if they forget through which port they entered the cavity, and thus
all the ports have equal probability of being the output for the waves.

It was shown by Brouwer and Beenakker (1997; see also Schäfer et al., 2003) that
scattering in multiport lossless systems can be related to that in a single-port, lossy
system. It was proposed that the introduction of N ′ (N ′ � 1) fictitious ports of a lossless
system would give equivalent statistics for the reflection coefficient as would be obtained
for a single port model with a uniform internal loss. Considering a system with M ports
all perfectly matched, we can pick port 1 as the input and consider the other ports as a
form of dissipation. Due to the energy escaping from the other (M − 1) ports, we will
obtain a reflection coefficient S11 with magnitude less than 1, which is similar to that
obtained in the one-port lossy case (i.e., with losses due to finite wall conductivity). The
cavity impedance seen from port 1, Z1, is calculated from S11, one of the elements from
the M by M scattering matrix,

Z1 = RR

1 + S11

1 − S11
+ jXR. (31)

When normalized by the radiation impedance this corresponds to a complex impedance
ζM = (1+S11)/(1−S11) = ρ+jξ . On the other hand, we can generate the lossy one-port
impedance ζ from (48) in Zheng, Antonsen, and Ott (2004), modelling the lossy effect
by adding a small imaginary term to the frequency (Doron, Smilansky, & Frenkel, 1990).
We can then compare the statistics of ζ from the lossy one port and ζM from the M-port
lossless case. (We note that approximate analytic formulae for the distributions of the
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Chaotic Impedance/Scattering 51

real and imaginary parts of ζ have recently been given by Fyodorov and Savin [2004; see
also Savin & Sommers, 2004, 2003].) An appropriate value of the damping parameter in
the one-port case, k̃2σ (σ = 1/Q), can be determined so that the average value of |S11|2
in the lossy case is equal to 2/(M + 1) for the TRS case (or 1/M for the TRSB case).
Then we can compare the real and imaginary parts of the impedances obtained in the
two different ways. In Figure 4, we include the results for the three different numbers of
ports, M = 4, 13, and 57, and the corresponding one-port result. For M = 4 we note that
the distributions are similar but clearly not the same. However, for M = 13 or 57, the
distributions for ζ and ζM are much closer. Thus, we confirm that distributed damping
and a large number of output channels are equivalent so as to affect the distribution of
the subunitary scattering matrix.

Figure 4. Comparison between the impedance obtained from the one-port lossy case and the
multiple lossless case (a) for the real part of the impedance, (b) for the imaginary part of the
impedance.
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52 X. Zheng et al.

We now briefly discuss the multiport case with M > 2 and with mismatch (|ρR| > 0).
As long as the assumption that the eigenfunctions (η) and the eigenvalues (θ or φ) are
independent is still true, 〈|S11|2〉 is related to the mismatch only through 〈cos(φk − φl)〉,
similar to the expression in (21). The same series of steps specified in the appendix can
be carried out to show that 〈cos(φk − φl)〉, as well as 〈|S11|2〉, depend only on |ρR| (and
are independent of the phase of ρR). We have verified this by numerical simulation using
the impedance matrix generated from (11) with up to seven channels.

Summary

We have generalized our random coupling model proposed in Zheng, Antonsen, and Ott
(2004) to the multiport case. A similar impedance normalization is applied to obtain the
statistical properties of the multiport chaotic scattering matrix. The correlation coefficients
between eigenvalues are calculated explicitly and agree with the random matrix theory.

We further incorporate the coupling parameters γR and γX into the formulation of
multiport scattering matrices and present the formula for the averaged reflection coeffi-
cients versus different values of coupling strength. We find that |ρR|, which is a function
of the two parameters above, characterizes the transport process. For different pairs of
(γR , γX), as long as they yield the same value of |ρR|, the corresponding averaged re-
flection coefficients are the same. This observation may offer a useful criterion for cavity
design.

Using HFSS, we test the conclusions above using impedance data calculated from
direct numerical solution of Maxwell’s equations. The agreement between the numeri-
cal results and the theoretical predictions convinces us that our approach of impedance
normalization successfully recovers the statistical ensemble for chaotic scattering in the
multiple-port case.

Appendix: Evaluation of 〈|S11|2〉
In this appendix, we will start from the one-port case and obtain an expression for the
phase of S in terms of the reflection coefficient ρR defined in (23). Then, using (13), we
can evaluate 〈cos(φ1 − φ2)〉 for the two-port case in the TRS and TRSB cases.

In the one-port case, S can be expressed as

S = ejφ = Z − Z0

Z + Z0

= j (γX + ξ̃ γR) − 1

j (γX + ξ̃ γR) + 1
,

(A.1)

where ξ̃ is a zero mean, unit width, Lorentzian random variable, which can be written as

ξ̃ = tan θ (A.2)

with θ uniformly distributed in [−π/2, π/2]. Putting (A.2) into (A.1), we get

ejφ = (γR + jγX − 1)ejθ − (γR − jγX + 1)e−jθ

(γR + jγX + 1)ejθ − (γR − jγX − 1)e−jθ
. (A.3)
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Chaotic Impedance/Scattering 53

Introducing ρR such that

γR + jγX − 1 = ρR(γR + jγX + 1) (A.4)

and defining

e−jα = γR − jγX + 1

γR + jγX + 1
, (A.5)

we obtain a compact expression for φ in terms of θ and ρR ,

ejφ = ρR − e−j (2θ+α)

1 − ρ∗
Re−j (2θ+α)

= ejφRe−j2θ ′ 1 + |ρR|ej2θ ′

1 + |ρR|e−j2θ ′ ,

(A.6)

where 2θ ′ = (2θ +α +π +φR). Since α and φR depend only on the coupling coefficient
γR and γX, and 2θ is uniformly distributed in [0, 2π], the angle 2θ ′ is also uniform in
[0, 2π ]. Thus,

Pφ(φ) = P2θ ′(2θ ′)
∣∣∣∣d(2θ ′)

dφ

∣∣∣∣
= 1

2π

1

1 + |ρR|2 − 2|ρR| cos(φ − φR)
.

(A.7)

The relation between φ and 2θ ′ also holds true for multiport cases. Furthermore, from
the joint probability density function of 2θ1 and 2θ2 in (13), which is only a function of
the difference of two angles, we find that 2θ ′

1 and 2θ ′
2 have the same joint distribution

specified in (13). Thus we can evaluate

〈cos(φ1 − φ2)〉 = Re[ejφ1−jφ2 ]

= Re

[
e−j2θ ′

1 + |ρR|
1 + |ρR|e−j2θ ′

1

ej2θ ′
2 + |ρR|

1 + |ρR|ej2θ ′
2

]
(A.8)

by using the joint distribution of 2θ ′
1 and 2θ ′

2, Pβ(2θ1, 2θ2) ∝ |ej2θ ′
1 − ej2θ ′

2 |β , where
β = 1 corresponds to the TRS case, and β = 2 to TRSB case.

Introducing ψ1 = 2θ ′
1, ψ2 = 2θ ′

2, and their difference ψ− = ψ1 − ψ2, we obtain for
the average of cos(φ1 − φ2),

〈cos(φ1 − φ2)〉 =
∫∫

dψ1dψ2

(2π)2
P(ψ1, ψ2)Re

[
ejψ1 + |ρR|

1 + |ρR|e−jψ1

ejψ2 + |ρR|
1 + |ρR|ejψ2

]

=
∫

dψ−
2π

P (ψ−)Re

[∫ 2π

0

ψ2

2π

e−j (ψ−+ψ2) + |ρR|
1 + |ρR|e−j (ψ−+ψ2)

ejψ2 + |ρR|
1 + |ρR|ejψ2

]
.

(A.9)
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54 X. Zheng et al.

The inner integral can be calculated by introducing a complex variable z = ejψ2 in terms
of which the inner integral becomes

1

2πj

∮
unitcircle

dzf (z)

z(z + |ρR|e−jψ−)
, (A.10)

where f (z) = (|ρR|z + e−jψ−)(z + |ρR|)/(1 + z|ρR|). Evaluating this integral via the
residues at the two poles within the unit circle, z = 0 and z = −|ρR|e−jψ− , we obtain

〈cos(φ1 − φ2)〉 =
∫ 2π

0

dψ−
2π

P (ψ−)

[
1 − (1 − |ρR|4)(1 − cos ψ−)

1 + |ρR|4 − 2|ρR|2 cos ψ−

]
. (A.11)

For the TRS case, Pψ−(ψ−) = π | sin(ψ−/2)|/2, and (A.11) yields

〈cos(φ1 − φ2)〉 = |ρR|4 + 2|ρR|2 − 1

2|ρR|2 + (1 − |ρR|2)3

4|ρR|3 ln
1 + |ρR|
1 − |ρR| . (A.12)

For the TRSB case, Pψ−(ψ−) = 2 sin2(ψ−/2) = (1 − cos ψ−), and (A.11) yields

〈cos(φ1 − φ2)〉 = 1 − (|ρR|2 − 1)(|ρR|2 − 3)

2
. (A.13)
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